Majorization framework for balancedlattice designs

نویسندگان

  • Aijun Zhang
  • Kai-Tai Fang
  • Runze Li
  • Agus Sudjianto
چکیده

This paper aims to generalize and unify classical criteria for comparisons of balanced lattice designs, including fractional factorial designs, supersaturated designs and uniform designs. We present a general majorization framework for assessing designs, which includes a stringent criterion of majorization via pairwise coincidences and flexible surrogates via convex functions. Classical orthogonality, aberration and uniformity criteria are unified by choosing combinatorial and exponential kernels. A construction method is also sketched out.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Concept of Majorization in Experimental Designs

The information of interest is contained in the variance matrix, σ − = 2 1 V Q , or equivalently in the information matrix Q . The problem of finding estimators minimizing a decreasing convex functional of the variance matrix or maximizing an increasing concave functional of the information matrix is crucial in statistics. There are several optimality criteria in bibliography. We explain how th...

متن کامل

A General Approach to Sparse Basis Selection: Majorization, Concavity, and Affine Scaling

Measures for sparse best–basis selection are analyzed and shown to fit into a general framework based on majorization, Schur-concavity, and concavity. This framework facilitates the analysis of algorithm performance and clarifies the relationships between existing proposed concentration measures useful for sparse basis selection. It also allows one to define new concentration measures, and seve...

متن کامل

Majorization, Polyhedra and Statistical Testing Problems. Majorization, Polyhedra and Statistical Testing Problems

There are important connections between majorization and convex polyhedra. Both weak majorization and majorization are preorders related to certain simple convex cones. We investigate the facial structure of a polyhedral cone C associated with a layered directed graph. A generalization of weak majorization based on C is introduced. It de nes a preorder of matrices. An application in statistical...

متن کامل

On Linear Maps Preserving g-Majorization from Fn to Fm

Let F and Fm be the usual spaces of n-dimensional column and m-dimensional row vectors on F, respectively, where F is the field of real or complex numbers. In this paper, the relations gsmajorization, lgw-majorization, and rgw-majorization are considered on F and Fm. Then linear maps T : F → F preserving lgw-majorization or gs-majorization and linear maps S : Fn → Fm, preserving rgw-majorizatio...

متن کامل

Linear preservers of Miranda-Thompson majorization on MM;N

Miranda-Thompson majorization is a group-induced cone ordering on $mathbb{R}^{n}$ induced by the group of generalized permutation with determinants equal to 1. In this paper, we generalize Miranda-Thompson majorization on the matrices. For $X$, $Yin M_{m,n}$, $X$ is said to be  Miranda-Thompson majorized by $Y$ (denoted by $Xprec_{mt}Y$) if there exists some $Din rm{Conv(G)}$ s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006